EPIC observations of volcanic eruptions: SO₂ data validation and development of UV ash mass retrievals

Simon Carn¹, Brad Fisher^{2,3}, Nick Krotkov², Yuxi Jin¹, Can Li^{2,4}

- 1. Michigan Technological University, Houghton, MI, USA; scarn@mtu.edu
- 2. NASA Goddard Space Flight Center, Greenbelt, MD, USA
- 3. SSAI, Lanham, MD, USA
- 4. ESSIC. University of Maryland, College Park, MD, USA

Acknowledgments: NASA DSCOVR Science Team for support; Marshall Sutton for data processing

EPIC L2 volcanic SO₂ algorithm (MS_SO2) and product

• State vector [Fisher et al., AMT, 2019]

$$\boldsymbol{x} = \begin{pmatrix} SO_2 \\ O_3 \\ dR/d\lambda \\ R \end{pmatrix} \longrightarrow \begin{array}{c} UV \text{ Aerosol Index} \\ (UVAI) \end{array}$$

- Uses 4 EPIC UV channels
- Step 1 -> initial estimates
- Step 2 -> reduce artifacts
 - Earth rotation
 - Geolocation errors
 - Cloud noise
 - Ozone variability
- We process the EPIC volcanic SO₂ product 'on demand' after significant eruptions (4,092 granules on ASDC)
- Radiance LUTs generated for SO₂ center of mass altitudes (CMAs) of 3, 5, 8 and 18 km for research use (L2 product = 13 km)

DSCOVR/EPIC - 04/10/2023 22:31 UT

SO₂ mass: 78.48 kt; SO₂ max: 103.61 DU at lon: 159.18, lat: 56.60

[Carn et al., GRL, 2018; Gorkyavi et al., Frontiers Rem. Sens., 2021; Carn et al., Frontiers Earth Sci., 2022]

Recent volcanic eruptions detected by EPIC (2021 -)

Volcano	Eruption time (UTC)	First EPIC	Difference	EPIC	Max. SO ₂
	-	detection (UTC)	(hours) ¹	exposures ²	column
				_	(DU)
Lewotolo (Indonesia)	Nov 29, 2020, 01:45	Nov 29, 02:52	1.12	4	192
Etna (Italy)	Feb 19, 2021, 07:50	Feb 19, 09:27	1.78	3	20
Etna (Italy)	Feb 24, 2021, 17:00	Feb 25, 07:20	14.3	4	31
Etna (Italy)	Feb 28, 2021, 07:02	Feb 28, 10:04	3.03	3	71
Sangay (Ecuador)	Mar 11, 2021, 08:15	Mar 11, 12:44	4.48	5	70
Etna (Italy)	Mar 12, 2021, 06:41	Mar 12, 09:27	2.77	4	52
Etna (Italy)	Apr 1, 2021, 07:40	Apr 1, 09:08	1.47	4	27
La Soufrière (St.	Apr 9, 2021, 19:00	Apr 9, 20:15	1.25	~20	154
Vincent)	_	_			
Sangay (Ecuador)	May 7, 2021, 15:00	May 7, 16:49	1.82	3	28
Etna (Italy)	Jun 22, 2021, 04:00	Jun 22, 10:25	6.42	3	14
Etna (Italy)	Jun 23, 2021, 02:00	Jun 23, 09:01	7.02	4	17
Etna (Italy)	Jun 24, 2021, 10:00	Jun 24, 11:03	1.05	5	37
Etna (Italy)	Jun 27, 2021, 09:00	Jun 27, 09:48	0.80	2	24
Etna (Italy)	Aug 9, 2021, 00:30	Aug 9, 06:22	5.87	9	39
Fukutoku-Oka-no-Ba	Aug 12, 2021, 21:20	TBD			
La Palma (Canary Is)	Sep 19, 2021, 14:00	Sep 20, 09:55	19.9	>50	74
Etna (Italy)	Sep 21, 2021, 06:15	Sep 21, 09:36	3.4	1	48
Etna (Italy)	Oct 23, 2021, 08:40	Oct 23, 09:46	1.1	3	54
Hunga Tonga-Hunga	Dec 19, 2021, 20:30	Dec 19, 20:53	0.38	2	23
Ha'apai (Tonga)					
Wolf (Ecuador)	Jan 7, 2022, 05:15	Jan 7, 14:51	9.6	>15	71
Hunga Tonga-Hunga	Jan 13, 2022, 15:30	Jan 13, 19:56	4.43	4	26
Ha'apai (Tonga)					
Hunga Tonga-Hunga	Jan 15, 2022, 04:00	Jan 15, 18:46	14.8	3	30
Ha'apai (Tonga)					
Etna (Italy)	Feb 10, 2022, 19:40	Feb 11, 09:27	13.8	3	30
Etna (Italy)	Feb 21, 2022, 10:00	Feb 21, 13:31	3.5	1	33
Karymsky (Russia)	Apr 19, 2022, 20:05	Apr 19, 22:13	2.13	4	40
Mauna Loa (USA)	Nov 28, 2022, 09:30	Nov 28 18:55	9.42	~25	136
Shiveluch (Russia)	Apr 10, 2023, 13:10	Apr 10, 20:43	7.55	>20	157
Etna (Italy)	May 21, 2023, 07:20	May 21, 07:37	0.28	8	83
Etna (Italy)	Aug 13, 2023, 21:33	Aug 14, 07:27	9.9	9	40
Shishaldin (USA)	Sep 16, 2023, 01:10	Sep 16, 02:33	1.38	4	tbd
Shishaldin (USA)	Sep 25, 2023, 13:42	Sep 25, 18:55	5.22	5	73

- Significant EPIC L2 SO₂ data processing effort in 2023 – identified many eruptions of Etna volcano (Italy).
- Largest eruption of 2023 (to date) is Shiveluch (Russia) in April.
- Prepared protocols for higher-cadence (~20 minute) EPIC imaging of a future volcanic eruption (requires 1-2 days advance warning).

Pre-eruptive gas accumulation in magma reservoirs

[•] Pre-eruptive accumulation of volcanic gases in magma reservoirs may trigger some eruptions.

- Usually not possible to detect accumulated gases before eruptions.
- Accumulated gas 'gradients'
 could be manifested in
 volcanic emissions during
 eruptions (high-cadence
 imaging of fresh eruption
 plumes required).
- Volcanic ash measurements also needed, to quantify erupted mass and assess impact of ash on SO₂ data.

Shiveluch eruption (April 2023) – volcanic SO₂, ash and dust

Shiveluch eruption (April 2023) – volcanic SO₂, ash and dust

DSCOVR/EPIC - 04/10/2023 22:31 UT

- EPIC SO₂ and UV Aerosol Index (UVAI)
- April 10-12, 2023
- Simultaneous observations of volcanic SO₂, ash and Asian dust transport.
- 'Volcanic ash' later reported (Apr 14) over Pacific NW, causing flight cancelations, but may have been dust?

2023 Sheveluch eruption (Kamchatka, Russia)

DSCOVR/EPIC - 04/10/2023 22:31 UT SO2 mass: 78.48 kt; SO2 max: 103.61 DU at Ion: 159.18, Iat: 56.60 160 22 155 160 SO₂ Column (DU) 20 50 10 100

- EPIC UVAI decreases quickly after eruption
- Consistent with heavy fallout of volcanic ash in Kamchatka
- Volcanic ash interference on SO₂ measurements possible

Shishaldin eruption (Sept 2023) – volcanic SO₂, ash & smoke

Shishaldin eruption (Sept 2023) – volcanic SO₂, ash & smoke

DSCOVR/EPIC - 09/25/2023 18:55 UT

SO2 mass: 43.30 kt; SO2 max: 39.53 DU at lon: -157.51, lat: 54.25

- EPIC SO₂ and UV Aerosol Index (UVAI)
- Sept 25, 2023
- UVAI detects smoke and volcanic ash – ash signal tracks with SO₂ in EPIC data

2022 Mauna Loa eruption (Hawaii)

- EPIC detects exponential decrease in SO₂ emissions, as expected during effusive eruptions.
- High-cadence permits isolation of 'fresh' SO₂ emissions, improving SO₂ flux calculations.

2022 Mauna Loa eruption (Hawaii)

Ground-based DOAS SO₂ data (C. Kern/USGS CVO)

- U.S. Geological Survey (USGS) Volcanic Emissions Group measured SO₂ emissions during eruption
- EPIC L2 SO₂ products produced for appropriate plume altitudes (5 km, 8 km, 13 km)
- SO₂ mass in first EPIC exposure (Nov 28, 18:55 UT; 103.5 kt) equal to flux of 3052 kg/s (~264 kt/d).

2022 Mauna Loa eruption (Hawaii)

10

20

50

 $imes 10^{18}$

18

16

14 2 12 column [molec/cm²]

so

6

-155.4

Kapapala

- EPIC detects volcanic plume close to the source due to very high SO₂ column amounts.
- Average ground-based DOAS SO₂ columns in plume: ~300 DU; EPIC maximum: ~100 DU.
- Cloudy conditions (scattering) and plume dilution in EPIC pixel could partly explain differences.

EPIC volcanic ash and SO₂ retrievals

- Volcanic ash impacts SO₂ measurements in most (all?) explosive volcanic eruption clouds.
- Modeling volcanic ash and cloud optical properties at EPIC UV wavelengths (317, 325, 340, 388 nm).
- Testing/debugging VLIDORT 2.8.5 vs. Arizona RTM (ash particle effective radii of 4 μ m and 6 μ m).
- Scripts to generate aerosol-cloud LUTs are available from EPIC UV Aerosol team.
- Test using Raikoke eruption (fixed cloud and ash vertical profiles and geometry).

Summary and future plans

- EPIC volcanic SO₂ science paper in preparation.
- Continue development of EPIC UV ash-SO₂ retrievals in collaboration with EPIC UV Aerosol team.
- Improve low-end EPIC SO₂ sensitivity by applying machine learning techniques to EPIC radiances?
- Improve SO₂ retrieval for higher SZA by expanding the radiance look-up tables.
- If a sufficiently large volcanic eruption occurs, attempt highercadence EPIC imaging (~20-30 minute repeat).
- Comparisons between EPIC and geostationary GK2B/GEMS observations of volcanic SO_2 (requires large eruption in Japan, Indonesia or the Philippines, or drifting SO_2 cloud).